Bovine Respiratory Disease Cinical Diagnosis & Impacts Food for thoughts

Damien Achard, DVM, MSc Global Veterinary Services Ruminant

October, 7th 2020

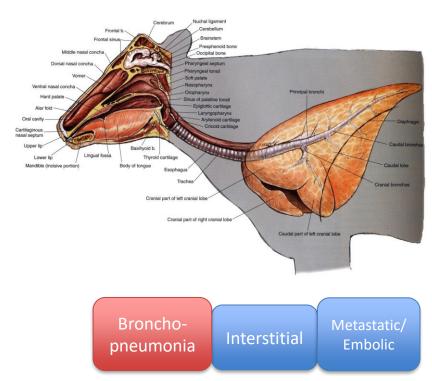
About this talk

BRD CLINICAL DIAGNOSIS

- ✓ Can we rely on clinical observations?
- ✓ How useful is the monitoring of temperature?
- ✓ What are clinical scoring used for?
- ✓ Do we need sensitive or specific clinical diagnosis tests?
- Can practitioners trust their ears (thoracic auscultation)?

CONSEQUENCES OF BRD

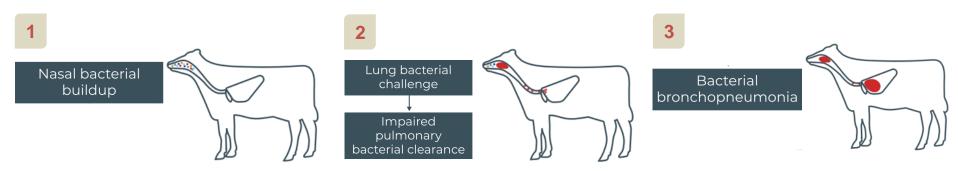
- ✓ What are the immediate impacts of BRD on calves?
- ✓ What do we know about the long-term impacts of BRD?



Raising young stock is a real challenge. Failure to manage adequately calfhood diseases can be costly.

Terminology

- What is BRD?
 - ✓ In the broadest sense, BRD refers to any disease of the upper or lower respiratory tracts
 - ✓ In many situations, BRD in cattle refers to a disease of the lower respiratory tract (pneumonia)
 - ✓ The most frequent situation being bronchopneumonia


Pathophysiology

What characterize bronchopneumonia?

✓ Invasion of pathogenic organisms that gain access to the lung through the pulmonary tree

Cranio-ventral distribution of lung lesions

Importance of BRD in dairy calves

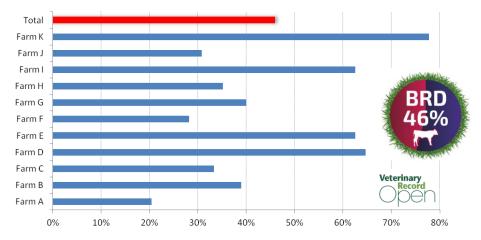
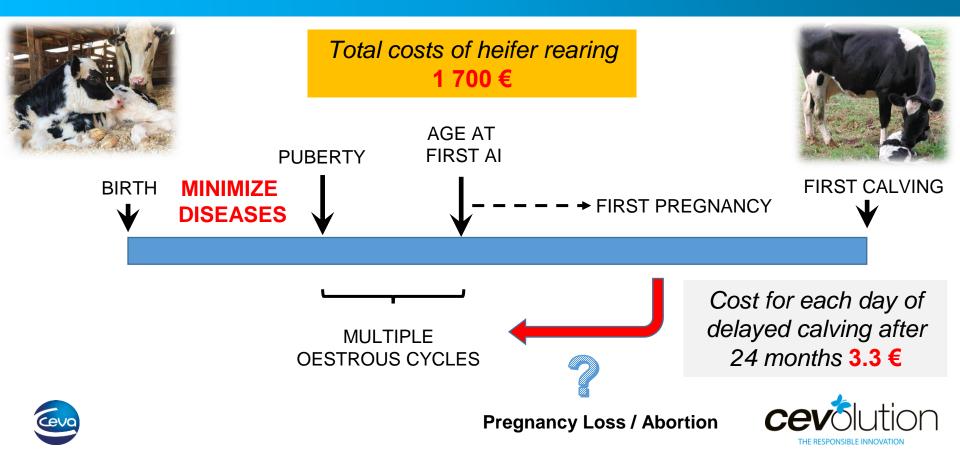


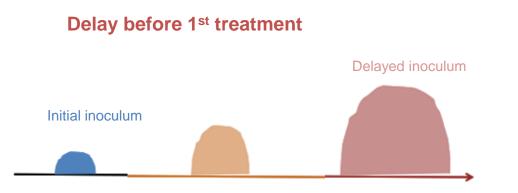
Table 10. Main postmortem diagnosis in 65 calves that died in 37 Norwegian dairy herds participating to 2008

Diagnosis	Calves (n)	Proportional rate
Bronchopneumonia	18	27.7
Enteritis	10	15.4
Chronic indigestion	8	12.3
Omphalophlebitis with pyemia, peritonitis, or multifocal hepatitis	4	6.2
Bacteremia/septicemia	4	6.2
Ruminal bloat	2	3.1
Weakborn with bronchopneumonia or bacteremia	2	3.1
Arthritis, purulent	2	3.1
Mesenteric torsion	2	3.1
Abomasal dilatation and peritonitis	1	1.5
Abscess in parotis region	1	1.5
Peritonitis	1	1.5
Pyelonephritis	1	1.5
Small intestine invagination	1	1.5
Inconclusive	8	12.3
Sum	65	100.0

% of calves affected by BRD



Johnson et al, 2017


BRD and the lifecycle of heifers

How to accurately identify clinical cases of bovine respiratory disease ?

To increase the chance for calves to survive BRD, early and accurate detection is critical

Why is it critical to detect bronchopneumonia as early as possible

Practical consequence Early detection of BRD is mandatory to avoid untreatable chronic lesions

REDUCED EFFICACY WHATEVER THE COMPOUND(S) USED !!!

Clinical impact

What characterize bronchopneumonia clinically?

Non specific clinical signs

- Depression
- Fever
- Anorexia

Clinical respiratory signs

- Abnormal or rapid breathing pattern
- Nasal discharge
- Coughing

Clinical signs can sometimes help to identify the responsible pathogen(s)

VIRUS	BRSV	BHV-	1	F	PI-3	BVDV
CLINICAL SIGNS	Fever, depression, anorexia, tachypnea, nasal discharge (±), coughing, <i>expiratory dyspnea,</i> <i>subcutaneous emphysema</i>	Fever, depression, and mucopurulent nas <i>muzzle hyperemia,</i> coughing, <i>inspira</i> (conjunctivitis ± kera	al discharge, nasal plaques , I tory stridor	more mild, commonly		Like BRSV but more mild, <i>commonly</i> asymptomatic
BACTERIA	M.haemolytica	P.multocida	H.somni		M.bovis	
CLINICAL	Fever, depression, anorexia, <i>signs of endotoxemia,</i> tachypnea, evidence of pleural	As for <i>P. multo</i> Fever, tachypnea, possibly also evi cough, depression, of pleural pain		dence	cough, nasa	prexia, tachypnea, Il discharge; chronic g pneumonia that

mucoid to

mucopurulent nasal

discharge

SIGNS

pain, mucoid to mucopurulent

nasal discharge, coughing (not

prominent)

or ongoing pneumonia that effusion, infertility or fails to respond as expected to therapy (joint or tendon sheath effusion, otitis, conjunctivitis)

abortion, otitis,

conjunctivitis,

neurologic signs)

	White et al, 2009	Timsit et al, 2016
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature

- ✓ Feedlots in South Africa (N=2) and USA (N=20)
- ✓ Cattle weight from 235 kg to 344 kg at arrival
- Comparators = Bayesian methods (no gold standard)

	White et al, 2009	Timsit et al, 2016
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature
Sensitivity	61,8 %	27 %

	White et al, 2009	Timsit et al, 2016	
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	
Sensitivity	61,8 %	27 % 🚽	Poor sensitivity with at least 40% of cattle with BRD not diagnosed

		-	Timsit et al, 2016	
-	BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	
	Sensitivity	61,8 %	27 % 🚽	Poor sensitivity with at least 40% of cattle with BRD not diagnosed
	Specificity	62,8 %	92 %	

	White et al, 2009	Timsit et al, 2016	
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	
Sensitivity	61,8 %	27 % 🚽	Poor sensitivity with at least 40% of cattle with BRD not diagnosed
Specificity	62,8 %	92 % 🚽	Average specificity with 10-40 % of healthy cattle unnecessarily treated

	White et al, 2009	Timsit et al, 2016	
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	
Sensitivity	55,7 – 68,4 % (61,8 %)	1 – 96 % (27%)	Poor sensitivity with at least 40% of cattle with BRD not diagnosed
Specificity	60,0 – 65,7 % (62,8 %)	14 – 100 % (92%)	Average specificity with 10-40 % of healthy cattle unnecessarily treated

	White et al, 2009	Timsit et al, 2016	
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	
Sensitivity	55,7 – 68,4 % (61,8 %)	1 – 96 % (27%)	Poor sensitivity with at least 40% of cattle with BRD not diagnosed
Specificity	60,0 – 65,7 % (62,8 %)	14 – 100 % (92%)	Average specificity with 10-40 % of healthy cattle unnecessarily treated
Cevo	Considerable hete	rogeneity in clinical	cevôlution

diagnostic accuracy among studies

	White et al, 2009	Timsit et al, 2016	
BRD Case Definition	Clinical signs and RT > 40°C	Clinical signs with or without elevated rectal temperature	<u>KEY POINTS</u>
Sensitivity	55,7 – 68,4 % (61,8 %)	1 – 96 % (27%)	Accuracy of clinical signs to identify BRD cases is limited
Specificity	60,0 – 65,7 % (62,8 %)	14 – 100 % (92%)	We need better (standardized) detection & confirmation tools

• Why this lack of accuracy?

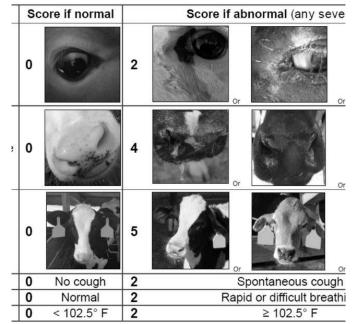
- ✓ Cattle are prey animals and consequently will often mask signs of sickness (false negative)
- ✓ Clinical signs typically used to diagnose BRD are not always specific to this disease condition (false positive)
- ✓ Distant evaluation of cattle is highly subjective
- Lack of consensus on the definition of a BRD (vs. mastitis for example)

"Clinical scoring systems compile clinical data into a single value to assess disease more objectively than an unstructured clinical evaluation alone."

Love et al. 2016

"A simple, objective clinical scoring system to improve and standardize BRD identification in dairy calves without the need for expensive equipment would be a useful tool for farm workers, clinicians, and researchers."

Love et al. 2014



How does they work?

- ✓ Scoring systems assign values to clinical signs, which are used to determine a total score
- ✓ The patient's total score, in turn, should correspond to their risk or likelihood of disease (e.g. having BRD or not)
- ✓ Objective methods should be used to weight scores
- Clinical signs that are difficult to measure or require expensive or time-consuming methods to measure should not be included

clinical signs, if total score is \geq 5, calf may be positive for bovine re

• Which one is useful?

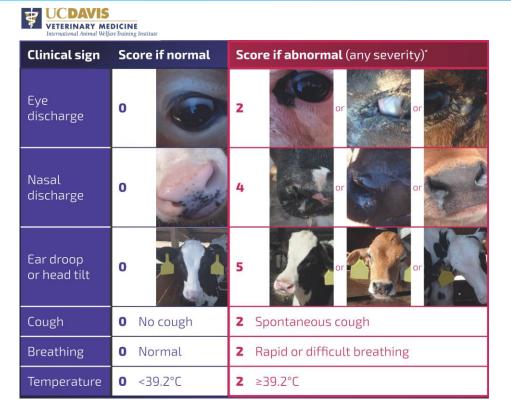
 Clinical scoring systems for BRD are not novel and some can be considered useful to diagnose BRD in cattle

● Developed to identify beef cattle for BRD treatment in feedlots (Depression, Appetite, Respiration, Temperature)

● Difficult to standardize between locations because the clinical sign weights and decision points are not defined

University of Wisconsin

● Based on five clinical signs to identify dairy calves that should be treated for BRD


- Published score weights and a decision rule
- Score subdivided each of its clinical signs into 4 levels can be ambiguous

● Absence of specific weighting between clinical signs

Simple and validated scoring system

• Each clinical sign is assessed using a dichotomous way (normal vs. abnormal)

• Specific chart for pre-weaned and post-weaned dairy calves

- BRD scoring system for pre-weaned dairy calves
- ✓ Add scores for all clinical signs, if total score is ≥ 5, calf may be positive for BRD
- ✓ Reported performances (Love et al. 2014)
 - ✓ Se: 89.4% Sp: 90.8%
 - ✓ Higher performances as a diagnostic vs. screening test

Clinical sign	Sc	ore if normal	rmal Score if abnormal (any severity) ¹				
Sunken eyes	0		4	Or			
Low body condition	0		5	Or Or			
Cough	0	No cough	2	Spontaneous cough			
Breathing	0	Normal	1	Rapid or difficult breathing			
Diurnal temp fluctuation	0	≤27° F (≤15° C)	1	> 27° F (>15° C)			
With diurna	al tem	perature data:		Without diurnal temperature data:			
calf is score p	ositive	e ² if total score ≥	2	calf is score positive ² if total score ≥ 1			
Confirmatory step for score positive ³		Do not treat		Treat			
Rectal temperature		< 102.5° F (< 39.2° C)	≥ 102.5° F (≥ 39.2° C)				

- BRD scoring system for weaned dairy calves
- Does not require handling of calves for preliminary diagnosis (RT done in a second step)
- ✓ Reported performances (Maier et al. 2019)
 - ✓ Screening Se: 77%
 - ✓ Diagnostic Se: 100%
 - ✓ Specificity: 61.9%

- What is positive
 - ✓ First-line diagnostic test easy to use by producers
 - ✓ A "solid" frame for BRD screening or diagnostic (less place for subjectivity)
 - ✓ Stimulate the implementation of a treatment protocol (rationalization of the treatment)
 - \checkmark Useful to monitor within-herd prevalence of BRD
- Some weaknesses
 - ✓ Learning process (training necessary)
 - ✓ Performances not perfect

Data from experimental challenges Grissett et al. 2015

- Fever is a nonspecific sign of infectious bronchopneumonia that is observed secondary to experimental challenges for all major respiratory pathogens
- Onset and duration of increased body temperature is variable depending on the settings and challenges

V/IDIIO

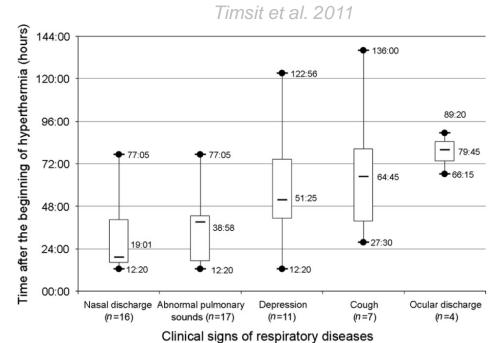
			VIRU	JS	В	BACTERIA	4	
		BVDV	BHV-1	PI-3	BRSV	M.h	P.m	M.b
	Onset	Day 4 (2-8)	Day 2 (1-10)	Day 7	Day 5 (1-7)	Day 1	Day 1	Day 1 (1-8)
FEVER (RT>40°C)	Peak	Day 7 (7-8)	Day 4 (3-10)	NR	Day 6 (5-8)	Day 1	Day 1	Day 4.5 <i>(1-8)</i>
	Resolution	Day 10	Day 8	NR	Day 8 (7-10)	Day 2 (2-6)	Day 2	Day 8 (5-13)

Data from experimental challenges Grissett et al. 2015

- Resolution of pyrexia before all CS resolve : for most of BRD pathogens, clinical signs resolved 4–6 days after RT have returned to less than 40°C
- CS and fever occur generally concomitantly except for BHV-1 (peak of fever before peak of CS) and M.bovis (peak of fever after peak of CS)

		VIICOO			D/ (O T ET (I/ (
		BVDV	BHV-1	PI-3	BRSV	M.h	P.m	M.b
FEVER (RT>40°C)	Onset	Day 4 (2-8)	Day 2 (1-10)	Day 7	Day 5 (1-7)	Day 1	Day 1	Day 1 (1-8)
	Peak	Day 7 (7-8)	Day 4 (3-10)	NR	Day 6 <i>(5-8)</i>	Day 1	Day 1	Day 4.5 (1-8)
	Resolution	Day 10	Day 8	NR	Day 8 (7-10)	Day 2 (2-6)	Day 2	Day 8 (5-13)

VIRUS


BACTERIA

Data from the field

- ✓ The accuracy of rectal temperature measurement depends on the thermometer used as well as on the technique used by the operator (Naylor et al. 2012)
- ✓ The onset of BRD signs always occurred after the onset of RH episodes, with a timelag from 12 to 136 h, depending on BRD signs

Le ThermoBolus®

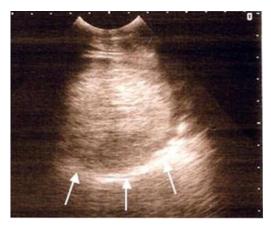
Bottom line

- ✓ May allow early detection of BRD cases (reticulo-rumen temperature)
- ✓ No real consensus on the threshold (39.5°C - 39.7°C - 40.0°C?)
- Not specific enough (clinical examination required to confirm BRD)
 - Not all animals with high RT are sick from BRD
 - Not in line with rational use of antimicrobials even though better than mass medication

The rectal temperature value of 39.7°C is commonly used as the threshold value for diagnosis of abnormal temperature in young bulls

Lhermie et al., 2017

- Diagnostic performances of TA
 - ✓ Most of veterinarians base their diagnosis of BP on thoracic auscultation which is rapid and easy to perform
 - Examination usually focus on the middle and ventral parts of the thorax
 - Abnormal lung sounds includes *increased bronchial sounds*, crackles, wheezes, pleural friction rubs and the absence of respiratory noises



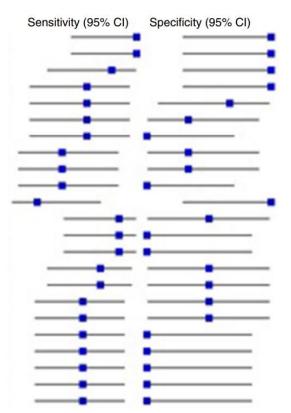
Diagnostic performances of TA

- ✓ In sheep, thoracic auscultation has been shown to have limitations because it can be relatively normal despite extensive lung lesions (Scott et al. 2010)
 - Auscultation could not detect focal pleural abscesses (up to 10 cm diameter)
- In adult cattle with chronic suppurative pneumonia, auscultation failed to identify the nature and extent of lung pathology (Scott, 2013)

Diagnostic performances of TA

- ✓ The sensitivity of auscultation was found to be poor to detect lung consolidation in young dairy calves (Buczinski et al., 2014)
- ✓ In a subsequent field study, TA was found sensitive (72.9%), but not specific (53.3%) to diagnose BP (Buczinski et al., 2016)
- ✓ This apparent discrepancy was attributed to bronchial sounds (included in the latter study)

Thoracic auscultation can improve the accuracy of a clinical examination score alone

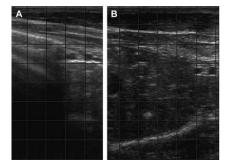


- To what extent diagnostic accuracy of lung auscultation varies between different practitioners?
 - 49 Dutch veterinarians each auscultated between 8 and 10 calves and make their decision to treat the animal with antimicrobials or not
 - ✓ Their decisions were compared with lung ultrasonography findings
 - ✓ The average sensitivity and specificity of lung auscultation were 0.63 and 0.46 respectively (poor)

Very poor reliability between multiple raters was found (Kalpha = 0.18) Pardon et al. 2019

Thoracic auscultation is of limited value to identify the responsible pathogen(s)

VIRUS	BRSV	BHV-1	PI-3	BVDV
CLINICAL SIGNS	Harsh bronchovesicular sounds over cranioventral lung, crackles and wheezes rarely, quiet lung sounds caused by pneumothorax	Not specifically described	Not specifically described	Not specifically described


.....

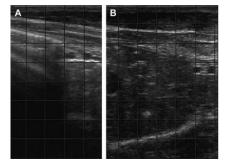
.....

BACTERIA	M.haemolytica	P.multocida	H.somni	M.bovis
CLINICAL SIGNS	Harsh bronchovesicular sounds over cranioventral lung ± crackles	Harsh bronchovesicular sounds over cranioventral lung ± crackles	Not specifically described	Not specifically described

- Diagnostic performances of TUS
 - ✓ TUS is able to detect BRD-induced lung lesions more specifically *consolidation*
 - The presence of *lung consolidation* is a reliable parameter to monitor even if the operator does not have a strong expertise on medical ultrasonography
 - \checkmark With expertise, time-to-results = 2 min per calf

Study	Study Summary	Test Under Investigation	Reference Standard Test	Were Possible Misclassifications of the Reference Standard Test Accounted For?		/: Specificit 95% Cl o BCl (%)		
Ollivett et al, ⁴³ 2015	25 dairy calves (1–12 wk old) with normal WRSC <5	TUS positive if any nonaerated lung visible	Necropsy	No	94 (69–100)	100 (64– 100)	2-gate design calves were selected if normal WRSC and stratified by ultrasonography findings to be compared with necropsy	
Zeineldin et al, ⁴² 2016	Feedlot calves 6–8 mo old, 24 cases and 24 matched control calves	TUS (7th-11th ICS) positive if heterogenous hyperechoic or echoic area	Pen-rider examination	No	70.8	87.5	2-gate design	
Berman et al, ¹⁶ 2019	209 veal calves and 301 preweaned dairy calves	TUS positive if consolidation depth ≥3 cm not considering site cranial to the heart	WRSC and serum haptoglobin	Reference standards uncertainty was accounted for using a bayesian latent class model	89 (55–100)	95 (92–98)	1-gate design Other ultrasonographic thresholds including or not cranial sites accuracy are also mentioned	AB

- Animal's performance with consolidated lungs
 - ✓ Lung consolidation (using TUS) at weaning has been associated with increased risk of being culled before calving (Adams et al., 2016)
 - ✓ Lung consolidation at weaning has also been associated with decreased reproductive performances (*Teixera et al. 2017*)
 - ✓ Milk production has been found to be decreased in the 1st lactation of Holstein dairy calves with consolidated lungs (Dunn et al., 2018)



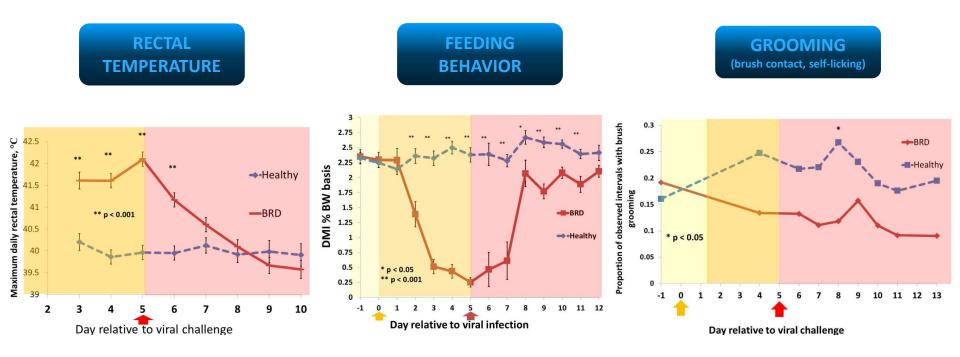
- Drawbacks of TUS
 - \checkmark Training and equipment needed

 ✓ It is not currently possible to distinguish active lung infection lesions that would benefit from treatment from lesions that are a sequela of previous disease for which treatment would not be beneficial

Se vs Sp: what should drive the diagnostic performances ?

• Why this debate?

- ✓ From a welfare perspective, sensitivity is important because delay in detection can be associated with animal suffering and increased risks of treatment failure
- ✓ In feedlot calves, increasing diagnostic specificity created more rapid, positive change in net returns than increasing sensitivity (Theurer et al., 2015)
- ✓ The specificity is also important for avoiding unnecessary antimicrobial treatment

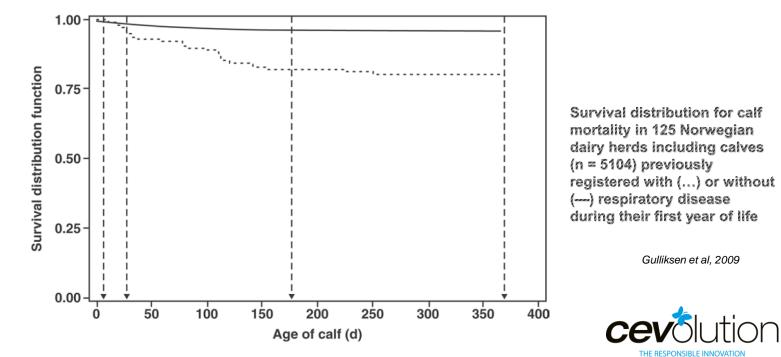


Short & long-term impacts of BRD in dairy calves

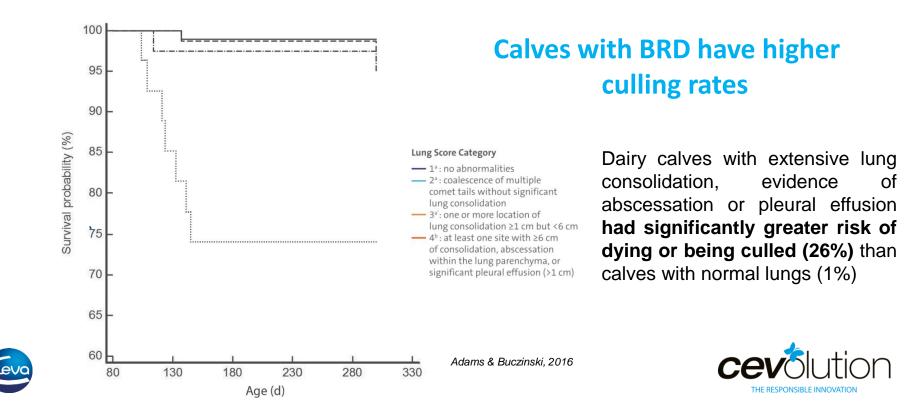
BRD is a major disease in dairy heifers. Recent data highlight the impact BRD has for the whole life of affected animals.

BRD has an immediate impact on calves

Sickness response in beef steers


Toaff-Rosenstein et al, 2016

BRD & Survival


Calves with BRD have a higher risk of mortality

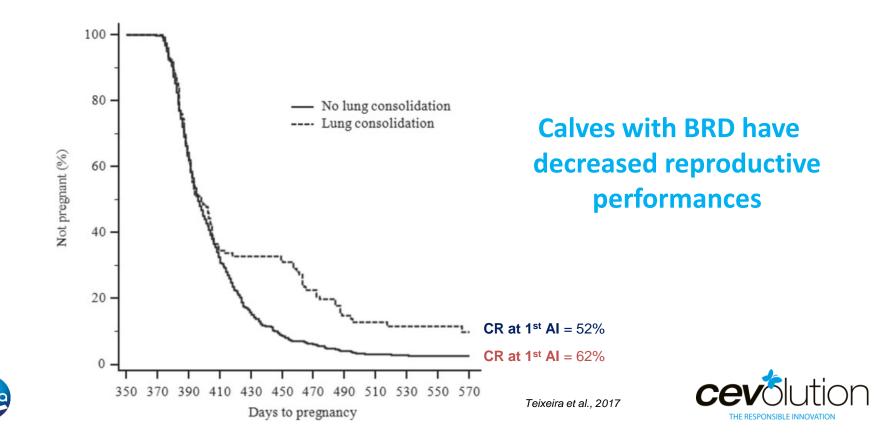
CALF MORTALITY IN NORWAY

BRD & Survival

BRD & Growth

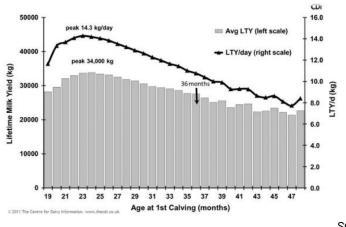
Calves with BRD have a decreased growth

Table 2. Linear regression of the ADG of heifers (estimates \pm SE; <i>P</i> -values in parentheses) from approximately 2 to 13 mo of age record	ded
during housing in 4 barns with random effects for source farm and weekly enrollment cohort	


$Variable^1$	Between 2 and 3 mo	Between 3 and 6 mo	Between 6 and 9 mo	Between 9 and 13 mo
Number	1,373	1,332	1,300	1,269
Intercept	0.70 ± 0.11 (<0.001)	0.37 ± 0.11 (0.01)	$0.91 \pm 0.07 \ (<0.001)$	1.25 ± 0.08 (0.07)
BRD60+	-0.17 ± 0.01	$-0.0\dot{7}\pm 0.02$	-0.04 ± 0.01	
(Referent = BRD60-)	(< 0.001)	(< 0.001)	(0.001)	(0.83)

BRD was associated with **reduced ADG between 2 and 9 months of age** and resulted in a 14.3 kg decrease in BW for calves with BRD at approximately 13 months of age

BRD & Reproduction



ev

BRD & Calving

Calves with BRD have a delayed AFC

The median age at first calving for heifers with and without BRD was **714** (95% CI: 705–723) **and 702** (95% CI: 699–705) **days**, respectively

Controlling for source farm, enrollment cohort, and antimicrobial treatment, **the odds of calving by 25 months of age were 0.6** (95% CI: 0.4 to 0.8) **times lower in calves with BRD** (P = 0.01)

BRD & Calving

Calves with BRD have increased risk for dystocia

Heifers with BRD were **1.5 times more likely to have a calving ease score ≥2 at their first calving** (95% CI: 1.1–2.2) compared with heifers without BRD

BRD & Milk production

Calves with BRD can have a reduced milk yield

The presence of lung consolidation (LC), at least once in the first 8 weeks of life did result in a 525 kg decrease in first-lactation 305-d milk production

(95% confidence interval: -992.81 to -60.25)

What is important to remember?

BRD & CALVES

- BRD = still the number 1 disease affecting young calves
- To improve the situation = early and accurate detection is critical
- Combine use of several tools is necessary to obtain better results (clinical scores, rectal temperature, lung auscultation, TUS)
- BRD directly impact the well-being of calves and is associated with decrease growth, delayed AFC, increased culling risks, increase risk of dystocia and decrease milk productivity

Thank you for your attention !